问题 选择题
已知△ABC中,角A、B、C的对边分别为a、b、c,已知cos2A+cos2B=2cos2C,则cosC的最小值为(  )
A.
3
2
B.
2
2
C.
1
2
D.-
1
2
答案

由cos2A+cos2B=2cos2C,

得1-2sin2A+1-2sin2B=2(1-2sin2C),即sin2A+sin2B=2sin2C,

由正弦定理可得a2+b2=2c2

由余弦定理可得c2+2abcosC=2c2

所以cosC=

c2
2ab
=
a2+b2
4ab
2ab
4ab
=
1
2

所以cosC的最小值为

1
2

故选C.

填空题
判断题