问题
填空题
已知α,β为方程x2+4x+2=0的二实根,则α3+14β+50=______.
答案
∵α、β是x2+4x+2=0的二实根.
∴α+β=-4.
α2+4α+2=0.
α2=-4α-2.
α3=-4α2-2α=-a(-4α-2)-2α=14α+8.
∴α3+14β+50=14α+8+14β+50=14(α+β)+58=14×(-4)+58=-56+58=2.
故本题答案为:2.
已知α,β为方程x2+4x+2=0的二实根,则α3+14β+50=______.
∵α、β是x2+4x+2=0的二实根.
∴α+β=-4.
α2+4α+2=0.
α2=-4α-2.
α3=-4α2-2α=-a(-4α-2)-2α=14α+8.
∴α3+14β+50=14α+8+14β+50=14(α+β)+58=14×(-4)+58=-56+58=2.
故本题答案为:2.