问题
填空题
已知f(x)=ax5+bx3+cx+1,且f(2012)=3,则f(-2012)=______.
答案
∵f(2012)=a×20125+b20123+2012c+1=3
∴a×20125+b20123+2012c=2
∴f(-2012)=a×(-2012)5+b×(-2012)3+(-2012c)+1
=-[a×20125+b20123+2012c]+1=-2+1=-1
故答案为:-1
已知f(x)=ax5+bx3+cx+1,且f(2012)=3,则f(-2012)=______.
∵f(2012)=a×20125+b20123+2012c+1=3
∴a×20125+b20123+2012c=2
∴f(-2012)=a×(-2012)5+b×(-2012)3+(-2012c)+1
=-[a×20125+b20123+2012c]+1=-2+1=-1
故答案为:-1