问题
解答题
已知a,b,c分别是△ABC的三个内角A,B,C的对边,
(1)求A的大小; (2)当a=
|
答案
(1)△ABC中,
=2b-c a
,由正弦定理变形得:cosC cosA
=2sinB-sinC sinA
,cosC cosA
即2sinBcosA=sinAcosC+sinCcosA,
整理得:2sinBcosA=sin(A+C)=sinB,
∵sinB≠0,∴cosA=
,1 2
则A=
;π 3
(2)由正弦定理及a=
,sinA=3
得3 2
=a sinA
=b sinB
=c sinC
=2,3 3 2
得:b=2sinB,c=2sinC,
则b2+c2=4sin2B+4sin2C
=2(1-cos2B+1-cos2C)
=2[2-cos2B-cos2(120°-B)]
=2[2-cos2B-cos(240°-2B)]
=2(2-
cos2B+1 2
sinB)3 2
=4+2sin(2B-30°),
∵0<B<120°,即-30°<2B-30°<210°,
∴-
<sin(2B-30°)≤1,1 2
则3<b2+c2≤6.