问题 解答题
已知a,b,c分别是△ABC的三个内角A,B,C的对边,
2b-c
a
=
cosC
cosA

(1)求A的大小;
(2)当a=
3
时,求b2+c2的取值范围.
答案

(1)△ABC中,

2b-c
a
=
cosC
cosA
,由正弦定理变形得:
2sinB-sinC
sinA
=
cosC
cosA

即2sinBcosA=sinAcosC+sinCcosA,

整理得:2sinBcosA=sin(A+C)=sinB,

∵sinB≠0,∴cosA=

1
2

则A=

π
3

(2)由正弦定理及a=

3
,sinA=
3
2
a
sinA
=
b
sinB
=
c
sinC
=
3
3
2
=2,

得:b=2sinB,c=2sinC,

则b2+c2=4sin2B+4sin2C

=2(1-cos2B+1-cos2C)

=2[2-cos2B-cos2(120°-B)]

=2[2-cos2B-cos(240°-2B)]

=2(2-

1
2
cos2B+
3
2
sinB)

=4+2sin(2B-30°),

∵0<B<120°,即-30°<2B-30°<210°,

∴-

1
2
<sin(2B-30°)≤1,

则3<b2+c2≤6.

单项选择题
名词解释