问题
选择题
已知△ABC中,若sinA(cosB+cosC)=sinB+sinC,则△ABC是( )
A.直角三角形
B.等腰三角形
C.等腰或直角三角形
D.等腰直角三角形
答案
sinA(cosB+cosC)=sinB+sinC,
变形得:sin(B+C)(cosB+cosC)=sinB+sinC,
即(sinBcosC+cosBsinC)(cosB+cosC)=sinB+sinC,
展开得:sinBcosBcosC+sinCcos2B+sinBcos2C+sinCcosCcosB=sinB+sinC,
sinBcosBcosC+sinCcosCcosB=sinB(1-cos2C)+sinC(1-cos2B),
cosBcosC(sinB+sinC)=sinBsin2C+sinCsin2B,即cosBcosC(sinB+sinC)=sinBsinC(sinB+sinC),
∵sinB+sinC≠0,
∴cosBcosC=sinBsinC,
整理得:cosBcosC-sinBsinC=0,即cos(B+C)=0,
∴B+C=90°,
则△ABC为直角三角形.
故选A