问题 解答题
在△ABC中,角A,B,C所对的边长分别为a,b,c,若△ABC的周长为
2
+1
,且sinA+sinB=
2
sinC

(1)求边AB的长;
(2)若△ABC的面积为
1
6
sinC
,求角C的度数.
答案

设△ABC的三边长分别为a,b,c,

(1)由题意及正弦定理得

a+b+c=
2
+1
a+b=
2
c
,故c=AB=1(4分)

(2)∵S=

1
2
absinC=
1
6
sinC,∴ab=
1
3
(6分)

又c=1,∴a+b=

2
+1-1=
2
(7分)

由余弦定理得cosC=

a2+b2-c2
2ab
=
(a+b)2-2ab-c2
2ab
=
(
2
)
2
-2×
1
3
-1
1
3
=
1
2
(9分)

∵C∈(0,π)∴C=

π
3
(10分)

单项选择题 A型题
选择题