问题 选择题
函数y=
3+x+x2
1+x
(x>0)
的最小值是(  )
A.2
3
B.-1+2
3
C.-1-2
3
D.-2+2
3
答案

y=

3+x+x2
1+x
=
3
1+x
+ x=
3
x+1
+(x+1)-1

≥2

3
-1,当且仅当
3
1+x
=x+1
,即x=
3
-1时,

函数y=

3+x+x2
1+x
(x>0)有最小值是2
3
-1.

故选B.

填空题
判断题