问题 解答题
已知函数f(x)=
ax-1
ax+1
(a>0,且a≠1),设函数g(x)=f(x-
1
2
)+1

(Ⅰ)求证:f(x)是奇函数;
(Ⅱ)①求证:g(x)+g(1-x)=2;②求g(0)+g(
1
100
)+g(
2
100
)+…+g(
99
100
)+g(1)
的值.
答案

证明:(I)f(x)定义域为R,f(-x)=

a-x-1
a-x+1
=
1-ax
1+ax
=-f(x),

所以f(x)为奇函数,----------(5分)

(Ⅱ)①g(x)+g(1-x)=f(x-

1
2
)+1+f(
1
2
-x)+1=f(x-
1
2
)+f(
1
2
-x)+2

因为f(x)为奇函数,所以 f(x-

1
2
)+f(
1
2
-x)=0,

所以g(x)+g(1-x)=2.--------------(10分)

②由①知g(x)+g(1-x)=2,

所以g(0)+…+g(1)=[g(0)+g(1)]+[g(

1
100
+g
99
100
)]+…+[g(
49
100
)+g(
51
100
)]+g(
1
2
)=2×50+1=101
--------------------(15分)

单项选择题
填空题