问题
填空题
定义在R上的函数f(x)满足f(x)=
|
答案
∵f(x)=
,log2(1-x),x≤0 f(x-1)-f(x-2),x>0
f(5)=f(4)-f(3)
=f(3)-f(2)-f(3)
=-f(2)
=-f(1)+f(0)
=-f(0)+f(-1)+f(0)
=f(-1)
=log22
=1.
故答案为:1.
定义在R上的函数f(x)满足f(x)=
|
∵f(x)=
,log2(1-x),x≤0 f(x-1)-f(x-2),x>0
f(5)=f(4)-f(3)
=f(3)-f(2)-f(3)
=-f(2)
=-f(1)+f(0)
=-f(0)+f(-1)+f(0)
=f(-1)
=log22
=1.
故答案为:1.