问题 解答题
选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C1的参数方程为
x=2+2cosθ
y=2sinθ
若曲线C2与曲线C1关于直线y=x对称
(Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=
π
3
与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.
答案

(I)设P(x,y),则由条件知M( y,x).由于M点在C1上,
所以

y=2+2cosθ
x=2sinθ
(θ为参数),

化成直角坐标方程为:x2+(y-2)2=4;
(Ⅱ)曲线C1的极坐标方程为ρ=4cosθ,曲线C2的极坐标方程为ρ=4sinθ.
射线θ=

π
3
与C1的交点A的极径为ρ1=4cos
π
3

射线θ=
π
3
与C2的交点B的极径为ρ2=4sin
π
3

所以|AB|=|ρ21|=2
3
-2.

单项选择题
单项选择题