问题 解答题
证明恒等式:
(1)
1+2sinαcosα
cos2α-sin2α
=
1+tanα
1-tanα
;  
(2)
1-sin6x-cos6x
1-sin4x-cos4x
=
3
2
答案

证明:(1)∵

1+2sinαcosα
cos2α-sin2α
=
(sinα+cosα)2
(cosα+sinα)(cosα-sinα)
=
cosα+sinα
cosα-sinα
=
1+tanα
1-tanα

1+2sinαcosα
cos2α-sin2α
=
1+tanα
1-tanα
成立.

(2)∵

1-sin6x-cos6x
1-sin4x-cos4x
=
(sin2x+cos2x)3-(sin6x+cos6x)
(sin2x+cos2x)2-(sin4x+cos4x)
=
3sin2x•cos2x
2sin2x•cos2x
=
3
2

1-sin6x-cos6x
1-sin4x-cos4x
=
3
2
成立.

单项选择题
名词解释