问题
填空题
在实数的原有运算法则中,我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=a,当a<b时,a⊕b=b2.已知函数f(x)=(2⊕x)•x-(m⊕x)(m<2),若对任意x∈[-3,2],f(x)≥-5恒成立,则实数m的取值范围是______(“•”“-”仍为通常的乘法与减法)
答案
当x=2时,
f(x)=(2⊕x)•x-(m⊕x)=8-4=4
对任意m<2均成立;
当x∈[-3,2)时,若x∈[-3,m],
则f(x)=(2⊕x)•x-(m⊕x)(m<2)
=2x-m,
若f(x)≥-5恒成立,则-6-m≥-5,解得m≤-1
若x∈(m,2),
则f(x)=(2⊕x)•x-(m⊕x)(m<2)
=2x-x2,
若f(x)≥-5恒成立,若f(x)≥-5恒成立,则2m-m2≥-5
即1-
≤m≤1+6 6
综上实数m的取值范围是 [1-
,-1]6
故答案为:[1-
,-1]6