问题
填空题
若tan(α+β)=3,tan(β-
|
答案
∵tan(α+β)=3,tan(β-
)=2,α+π 4
=(α+β)-(β-π 4
),π 4
∴tan(α+
)π 4
=tan[(α+β)-(β-
]π 4
=tan(α+β)-tan(β-
)π 4 1+tan(α+β)tan(β-
)π 4
=3-2 1+3×2
=
.1 7
故答案为:
.1 7
若tan(α+β)=3,tan(β-
|
∵tan(α+β)=3,tan(β-
)=2,α+π 4
=(α+β)-(β-π 4
),π 4
∴tan(α+
)π 4
=tan[(α+β)-(β-
]π 4
=tan(α+β)-tan(β-
)π 4 1+tan(α+β)tan(β-
)π 4
=3-2 1+3×2
=
.1 7
故答案为:
.1 7