问题 选择题

(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)的值是          (  )

A.16

B.8

C.4

D.2

答案

根据tan45°=tan(21°+24°)=

tan21°+tan24°
1-tan21°tan24°
=1

得到tan21°+tan24°=1-tan21°tan24°,

可得tan21°+tan24°+tan21°tan24°=1

同理得到tan22°+tan23°=1-tan22°tan23°,

tan22°+tan23°+tan22°tan23°=1;

(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)

=[(1+tan21°)(1+tan24°)][(1+tan22°)(1+tan23°)]

=(1+tan24°+tan21°+tan24°tan21°)(1+tan22°+tan23°+tan22°tan23°)

=(1+1-tan24°tan21°+tan24°tan21°)(1+1-tan22°tan23°+tan22°tan23°)

=4

故选C.

选择题
多项选择题