问题
解答题
设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=
(I) 求△ABC的周长; (II)求cos(A-C)的值. |
答案
(I)∵c2=a2+b2-2abcosC=1+4-4×
=4,1 4
∴c=2,
∴△ABC的周长为a+b+c=1+2+2=5.
(II)∵cosC=
,∴sinC=1 4
=1-cos2C
=1-(
)21 4
.15 4
∴sinA=
=asinC c
=15 4 2
.15 8
∵a<c,∴A<C,故A为锐角.则cosA=
=1-(
)215 8
,7 8
∴cos(A-C)=cosAcosC+sinAsinC=
×7 8
+1 4
×15 8
=15 4
.11 16