问题
解答题
在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB-ccosB. (I)求cosB的值; (II)若
|
答案
(I)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,
则2RsinBcosC=6RsinAcosB-2RsinCcosB,
故sinBcosC=3sinAcosB-sinCcosB,
可得sinBcosC+sinCcosB=3sinAcosB,
即sin(B+C)=3sinAcosB,
可得sinA=3sinAcosB.又sinA≠0,
因此cosB=
.(6分)1 3
(II)由
•BA
=2,可得accosB=2,BC
又cosB=
,故ac=6,1 3
由b2=a2+c2-2accosB,
可得a2+c2=12,
所以(a-c)2=0,即a=c,
所以a=c=
.(13分)6