问题 解答题
已知∠A、∠B是△ABC的两个内角,向量
m
=(cos
A-B
2
)
i
+(
5
2
sin
A+B
2
)
j
,其中
i
, 
j
为相互垂直的单位向量.若|
m
|=
3
2
4
,证明:tanAtanB=
1
9
答案

证明:∵|

m
|=
3
2
4
,∴cos2
A-B
2
+
5
4
sin2
A+B
2
=
9
8

1+cos(A-B)
2
+
5
4
×
1-cos(A+B)
2
=
9
8
,即cos(A-B)-
5
4
cos(A+B)=0

cos(A-B)=

5
4
cos(A+B),即cosAcosB+sinAsinB=
5
4
cosAcosB-
5
4
sinAsinB

9
4
sinAsinB=
1
4
cosAcosB,∴tanAtanB=
1
9

单项选择题 A1/A2型题
单项选择题