问题 选择题
已知定义在R上的函数f(x)满足:对任意x∈R,都有f(x)=f(2-x)成立,且当x∈(-∞,1)时,(x-1)f′(x)<0(其中f'(x)为f(x)的导数).设a=f(0),b=f(
1
2
),c=f(3)
,则a、b、c三者的大小关系是(  )
A.a<b<cB.c<a<bC.c<b<aD.b<c<a
答案

由题意得:对任意x∈R,都有f(x)=f(2-x)成立,

所以函数的对称轴为x=1,所以f(3)=f(-1).

因为当x∈(-∞,1)时,(x-1)f′(x)<0,

所以f′(x)>0,

所以函数f(x)在(-∞,1)上单调递增.

因为-1<0<

1
2

所以f(-1)<f(0)<f(

1
2
),即f(3)<f(0)<f(
1
2
),

所以c<a<b.

故选B.

单项选择题
不定项选择题