问题
解答题
设函数f(α)=
(1)设∠A是△ABC的内角,且为钝角,求f(A)的最小值; (2)设∠A,∠B是锐角△ABC的内角,且∠A+∠B=
|
答案
(1)f(A)=
+cos2A=(cos2A+1)cos(
π-A)3 2 2cos(π+A)
+cos2A=cos2AsinA cosA
sin2A+cos2A=1 2
(sin2A+cos2A+1)=1 2
sin(2A+2 2
)+π 4
.1 2
∵角A为钝角,
∴
<A<π,π 2
<2A+5π 4
<π 4
.9π 4
∴当2A+
=π 4
时,f(A)取值最小值,其最小值为3π 2
.1- 2 2
(2)由f(A)=1得
sin(2A+2 2
)+π 4
=1,∴sin(2A+1 2
)=π 4
.2 2
∵A为锐角,∴
<2A+π 4
<π 4
π,5 4
∴2A+
=π 4
,A=3π 4
.π 4
又∵A+B=
,∴B=7π 12
.∴C=π 3
.5π 12
在△ABC中,由正弦定理得:
=BC sinA
.∴AC=AC sinB
=BCsinB sinA
.6