问题
填空题
在△ABC中,若tanAtanC+tanBtanC=tanAtanB,且a2+b2=mc2,则实数m等于______.
答案
已知等式即
+sinAsinC cosAcosC
=sinBsinC cosBcosC
,sinAsinB cosAcosB
=sinAsinCcosB+cosAsinBsinC cosAcosBcosC sinAsinB cosAcosB
即
=sinC(sinAcosB+cosAsinB) cosAcosBcosC sinAsinB cosAcosB
可得
=sinAsinB sinC
,sin(A+B) cosC
即
=1,sinAsinBcosC sin2C
即
=1. 所以abcosC c2
=1,a2+b2-c2 2c2
故a2+b2=3c2.
∴m=3
故答案为:3.