问题
解答题
定义在R上的单调增函数f(x),对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)判断函数f(x)的奇偶性;
(2)若f(k•3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.
答案
(1)证明:令x=y=0,代入f(x+y)=f(x)+f(y)(x,y∈R),得f(0+0)=f(0)+f(0),即 f(0)=0.
令y=-x,代入f(x+y)=f(x)+f(y)(x,y∈R),得 f(x-x)=f(x)+f(-x),
又f(0)=0,则有0=f(x)+f(-x).
即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.--------------(4分)
(2)f(x)在R上是单调增函数,又由(1)知f(x)是奇函数.
∵f(k•3x)<-f(3x-9x-2)=f(-3x+9x+2),
∴k•3x<-3x+9x+2,
∴32x-(1+k)•3x+2>0对任意x∈R成立.
令t=3x>0,问题等价于t2-(1+k)t+2>0对任意t>0恒成立.--------------------(6分)
令g(t)=t2-(1+k)t+2,其对称轴为x=1+k 2
当
<0,即k<-1时,f(0)>2,符合题意;1+k 2
当
≥0,即k≥-1时,则△=(1+k)2-4×2<0,∴-1≤k<-1+21+k 2 2
综上,k<-1+2
--------------------------(12分)2