问题 解答题
已知三点A(cosα,sinα),B(cosβ,sinβ),C(cosγ,sinγ),若向量
OA
+K
OB
+(2-K)
OC
=
0
(k为常数且0<k<2,O为坐标原点,S△BOC表示△BOC的面积)
(1)求cos(β-γ)的最值及相应的k的值;
(2)求cos(β-γ)取得最大值时,S△BOC:S△AOC:S△AOB
答案

(1)由

OA
+K
OB
+(2-K)
OC
=
0
k
OB
+(2-k)
OC
=-
OA

两边平方,得k2+(2-k)2+2k(2-k)cos(β-γ)=1

整理得cos(β-γ)=

2k2-4k+3
2k2-4k
=1+
3
2(k2-2k)

当k∈(0,2)时,k2-2k∈[-1,0),

3
2(k2-2k)
∈(-∞,-
3
2
],1+
3
2(k2-2k)
∈(-∞,-
1
2
]

又cos(β-γ)∈[-1,1],

cos(β-γ)∈[-1,-

1
2
]

当k=1时,cos(β-γ)取得最大值-

1
2

k=

1
2
或k=
3
2
时,cos(β-γ)取得最小值-1.

(2)由(1)得,cos(β-γ)取得最大值-

1
2
时,k=1

此时,

OA
+
OB
+
OC
=
0
OB
OC
的夹角为120°.

|

OA
|=|
OB
|=|
OC
|,(
OA
+
OB
)2=
OA
2
+
OB
2
+2
OA
OB
=1⇒
OA
OB
=-
1
2

OA
OB
的夹角为120°.

故S△BOC:S△AOC:S△AOB=1:1:1.

单项选择题
单项选择题