问题
选择题
若f(x)是R上的减函数,且f(x)的图象经过点A(0,4)和点B(3,-2),则当不等式|f(x+t)-1|<3的解集为(-1,2 ) 时,t的值为( )
A.-1
B.0
C.1
D.2
答案
由不等式|f(x+t)-1|<3,
得到:-3<f(x+t)-1<3,即-2<f(x+t)<4,
又因为f(x)的图象经过点A(0,4)和点B(3,-2),
所以f(0)=4,f(3)=-2,
所以f(3)<f(x+t)<f(0),又f(x)在R上为减函数,
则3>x+t>0,即-t<x<3-t,解集为(-t,3-t),
∵不等式的解集为(-1,2),
∴-t=-1,3-t=2,
解得t=1.
故选C.