问题
选择题
在△ABC中,若sinB=2sinAcosC,那么△ABC一定是( )
A.等腰直角三角形
B.等腰三角形
C.直角三角形
D.等边三角形
答案
∵sinB=sin[π-(A+C)]=sin(A+C)=sinAcosC+cosAsinC=2sinAcosC,
∴cosAsinC-sinAcosC=sin(C-A)=0,即C-A=0,C=A,
∴a=c,即△ABC为等腰三角形.
故选B
在△ABC中,若sinB=2sinAcosC,那么△ABC一定是( )
A.等腰直角三角形
B.等腰三角形
C.直角三角形
D.等边三角形
∵sinB=sin[π-(A+C)]=sin(A+C)=sinAcosC+cosAsinC=2sinAcosC,
∴cosAsinC-sinAcosC=sin(C-A)=0,即C-A=0,C=A,
∴a=c,即△ABC为等腰三角形.
故选B