问题 填空题
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,求
(1)函数f(x)=x3-3x2+3x对称中心为______.
(2)若函数g(x)=
1
3
x3-
1
2
x2+3x-
5
12
+
1
x-
1
2
,则g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)=______.
答案

(1)∵函数f(x)=x3-3x2+3x,∴f′(x)=3x2 -6x+3,∴f″(x)=6x-6.

令 f″(x)=6x-6=0,解得 x=1,且f(1)=1,故函数f(x)=x3-3x2+3x对称中心为(1,1),

故答案为 (1,1).

(2)若函数g(x)=

1
3
x3-
1
2
x2+3x-
5
12
+
1
x-
1
2
=
1
3
x3-
1
2
x2+3x-
5
12
+
2
2x-1
,令h(x)=
1
3
x3-
1
2
x2+3x-
5
12
,m(x)=
2
2x-1
,则g(x)=h(x)+m(x).

 则h′(x)=x2-x+3,h″(x)=2x-1,令h″(x)=0,可得x=

1
2
,故h(x)的对称中心为(
1
2
,1).

设点p(x0,y0)为曲线上任意一点,则点P关于(

1
2
,1)的对称点P′(1-x0,2-y0)也在曲线上,

∴h(1-x0)=2-y0 ,∴h(x0)+h(1-x0)=y0+(2-y0)=2.

∴h(

1
2011
)+h(
2
2011
)+h(
3
2011
)+h(
4
2011
)+…+h(
2010
2011

=[h(

1
2011
)+h(
2010
2011
)]+[h(
2
2011
)+h(
2009
2011
)]+[h(
3
2011
)+h(
2008
2011
)]+…+[h(
1005
2011
)+h(
1006
2011
)]=1005×2=2010.

由于函数m(x)=

2
2x-1
的对称中心为(
1
2
,0),可得m(x0)+m(1-x0)=0.

∴m(

1
2011
)+m(
2
2011
)+m(
3
2011
)+m(
4
2011
)+…+m(
2010
2011

=[m(

1
2011
)+m(
2010
2011
)]+[m(
2
2011
)+m(
2009
2011
)]+[m(
3
2011
)+m(
2008
2011
)]+…+[m(
1005
2011
)+m(
1006
2011
)]=1005×0=0.

∴g(

1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)=h(
1
2011
)+h(
2
2011
)+h(
3
2011
)+h(
4
2011
)+…+h(
2010
2011

+m(

1
2011
)+m(
2
2011
)+m(
3
2011
)+m(
4
2011
)+…+m(
2010
2011

=2010+0=2010,

故答案为2010.

单项选择题
问答题 简答题