问题
填空题
过点(2,1)的直线中,被圆x2+y2-2x-4y=0截得的弦长最短的直线方程为______.
答案
∵圆x2+y2-2x-4y=0的圆心为C(1,2)
∴设A(2,1),得AC的斜率kAC=
=-12-1 1-2
∵直线l经过点A(2,1),且l被圆x2+y2-2x-4y=0截得的弦长最短
∴直线l与经过点A(2,1)的直径垂直的直线
由此可得,直线l的斜率为k=
=1-1 kAC
因此,直线l方程为y-1=x-2,即x-y-1=0
故答案为:x-y-1=0