问题
解答题
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,且在两种坐标系中取相同的长度单位.直线l极坐标方程为ρsin(θ+
(1)将直线l极坐标方程化成直角坐标方程; (2)试判断直线l与圆C的位置关系. |
答案
(1)直线l极坐标方程可化为ρsinθ+ρcosθ=4,(3分)
由ρcosθ=x,ρsinθ=y,
故直线l的直角坐标方程为x+y-4=0.(7分)
(2)圆C的参数方程化为普通方程为(x-5)2+(y-5)2=9,(10分)
因为圆心(5,5)到直线l的距离d=
=3|5+5-4| 2
>3,(13分)2
所以直线l与圆C相离.(14分)