问题
解答题
设函数f(x)=sin(x+60°)+2sin(x-60°)-
(1)求f(30°)、f(60°)的值; (2)由(1)你能得到什么结论?并给出你的证明. |
答案
(1)f(30°)=sin90°+2sin(-30°)-
cos90°=1-1+0=0,3
f(60°)=sin120°+2sin0°-
cos60°=3
+0-3 2
×3
=0;1 2
(2)由(1)得f(x)=0,证明如下:f(x)=sin(x+60°)+2sin(x-60°)-
cos(120°-x)3
=sinxcos60°+cosxsin60°+2(sinxcos60°-cosxsin60°)-
(cos120°cosx+sin120°sinx)3
=
sinx+1 2
cosx+2(3 2
sinx-1 2
cosx)-3 2
(-3
cosx+1 2
sinx)3 2
=
sinx+1 2
cosx+sinx-3 2
cosx+3
cosx-3 2
sinx)=03 2
即f(x)=0.