问题 解答题
已知函数f(x)的定义域为(0,+∞),对定义域内的任意x,y都有f(xy)=f(x)+f(y)-3
(1)求f(1)的值;
(2)求证:f(x)+f(
1
x
)=6(x>0)

(3)若x>1时,f(x)<3,判断f(x)在其定义域上的单调性,并证明.
答案

(1)由已知已知函数f(x)的定义域为(0,+∞),因此令x=y=1得

     f(1•1)=f(1)+f(1)-3,可得:

     f(1)=3                        (2分)

    (2)由已知以及(1)的结论可得f(1)=f(x•

1
x
)=f(x)+f(
1
x
)-3
=3

     即有:f(x)+f(

1
x
)=6(x>0)      (7分)

    (3)f(x)是(0,+∞)上的减函数(9分),证明如下:

     设x1,x2∈(0,+∞)且x1<x2

x2
x1
>1,∴f(
x2
x1
)<3,f(x2)+f(
1
x1
)-3<3,

     f(x2)<6-f(

1
x1
)=f(x1).

∴f(x)是(0,+∞)上的减函数.   (14分)

单项选择题 A1型题
问答题 简答题