问题
解答题
已知函数y=(log2
(1)求当x=4
(2)求函数y的最大值和最小值,并求出此时x的值. |
答案
(1)y=
(log2x-2)(log2x-1)1 2
当x=4
时,2 3
(1 2
-2)(4 3
-1)=4 3
×(-1 6
)=-2 3 1 9
(2)令log2x=t,x∈[2,4]则t∈[1,2]
∴y=
(log2x-2)(log2x-1)=1 2
(t-2)(t-1)1 2
=
(t2-3t+2)=1 2
(t-1 2
)2-3 2
①1 8
t=
时ymin=-3 2
此时x=21 8 2
t=1或2时,ymax=0此时x=2或4.