已知A、B、C是△ABC的三个内角,y=cotA+
(1)若△ABC是正三角形,求y的值; (2)若任意交换△ABC中两个角的位置,y的值是否变化?证明你的结论; (3)若△ABC中有一内角为45°,求y的最小值. |
(1)若△ABC是正三角形,则A=B=C=
,π 3
y=cotA+
=2sinA cosA+cos ( B-C )
+3 3
=3
+11 2
.3
(2)∵y=cotA+
=2sinA cosA+cos ( B-C ) cos2A+cosAcos(B-C)+2sin2A sinAcosA+sinAcos(B-C)
=
=1+sin2A-cos(B+C)cos(B-C)
sin2A+sin(B+C)cos(B-C)1 2 1+
-1-cos2A 2
(cos2B+cos2C)1 2
[sin2A+sin2B+sin2C]1 2
=
.3-( cos2A+cos2B+cos2C) sin2A+sin2B+sin2C
∴若任意交换△ABC中两个角的位置,则y的值不会发生变化.
(3)若△ABC中有一内角为45°,不妨设A=45°,则B+C=135°.
y=
=3-( cos2A+cos2B+cos2C) sin2A+sin2B+sin2C
=3-(cos2B+cos2C) 1+sin2B+sin2C 3-2cos(B+C)cos(B-C) 1+2sin(B+C)cos(B-C)
=
=1+3+
cos(B-C)2 1+
cos(B-C)2
.2 1+
cos(B-C)2
故当cos(B+C)=1(最大值)时,y有最小值为1+
=22 1+ 2
-1.2