问题
解答题
已知向量
(Ⅰ)求f(x)的最小值; (Ⅱ)若f(a)=
|
答案
(Ⅰ)由向量
=(1,sinx),a
=(sin2x,cosx),b
所以f(x)=
•a
=sin2x+sinxcosx=b
+1-cos2x 2
=sin2x 2
sin(2x-2
)+1π 4 2
因为x∈[0,
],所以2x-π 2
∈[-π 4
,π 4
],3π 4
当2x-
=-π 4
,即x=0时,f(x)有最小值0;π 4
(Ⅱ)由f(a)=
=
sin(2a-2
)+1π 4 2
,得sin(2a-3 4
)=π 4 2 4
∵a∈[0,
],2a-π 2
∈[-π 4
,π 4
],又0<sin(2a-3π 4
)=π 4
<2 4 2 2
∴2a-
∈(0,π 4
),得cos(2a-π 4
)=π 4
=1-(
)22 4
.14 4
∴sin2a=sin(2a-
+π 4
)=π 4
[sin(2a-2 2
)+cos(2a-π 4
)]π 4
=
[2 2
+2 4
]=14 4
.1+ 7 4