问题 解答题
在△ABC中,角A,B,C的对边分别为a,b,c,B=
π
6
cosA=
4
5
,b=
3

(1)求a的值;
(2)求sin(2A-B)的值.
答案

(1)∵A,B,C为△ABC的内角,B=

π
6
cosA=
4
5
,b=
3

sinB=sin

π
6
=
1
2
sinA=
1-cos2A
=
1-(
4
5
)
2
=
3
5

由正弦定理

a
sinA
=
b
sinB
,得a=
bsinA
sinB
=
3
×
3
5
1
2
=
6
3
5

(2)∵B=

π
6

cosB=cos

π
6
=
3
2

又∵cosA=

4
5
sinA=
3
5

sin2A=2sinAcosA=2×

3
5
×
4
5
=
24
25

cos2A=2cos2A-1=2×(

4
5
)2-1=
7
25

∴sin(2A-B)=sin2AcosB-cos2AsinB=

24
25
×
3
2
-
7
25
×
1
2
=
24
3
-7
50

单项选择题
名词解释