问题
选择题
已知定义域为R的函数f(x)满足f(-x)=-f(x+2),当x>1时,f(x)单调递减,如果1+x1x2<x1+x2<2,则f(x1)+f(x2)的值( )
A.恒小于0
B.恒大于0
C.可能为0
D.可正可负
答案
由1+x1x2<x1+x2<2,
可得,x1+x2<2,x1x2<1,且(x1-1)(x2-1)<0
不妨设x1<1,x2>1,则2-x1>x2>1
∵当x>1时,f(x)单调递减,
∴f(2-x1)<f(x2)
∵函数y=f(x)满足f(2+x)=-f(-x),即f(2-x)=-f(x)
∴f(x1)-f(x2)
∴f(x1)+f(x2)的值恒大于0,
故选B