问题
解答题
求sin220°+cos280°+sin20°cos80°的值.
答案
原式=
(1-cos40°)+1 2
(1+cos160°)+1 2
(sin100°-sin60°)3 2
=1+
(cos160°-cos40°)+1 2
sin100°-3 2 3 4
=-
sin100°sin60°+1 4
sin100°3 2
=
.1 4
故答案为
.1 4
求sin220°+cos280°+sin20°cos80°的值.
原式=
(1-cos40°)+1 2
(1+cos160°)+1 2
(sin100°-sin60°)3 2
=1+
(cos160°-cos40°)+1 2
sin100°-3 2 3 4
=-
sin100°sin60°+1 4
sin100°3 2
=
.1 4
故答案为
.1 4