问题
解答题
已知:asinx+bcosx=0 ①,Asin2x+Bcos2x=C ②,其中a,b不同时为0,求证:2abA+(b2-a2)B+(a2+b2)C=0
答案
证明:设siny=-
,cosy=b a2+b2 a a2+b2
则①可写成cosysinx-sinycosx=0,
∴sin(x-y)=0∴x-y=kπ(k为整数),
∴x=y+kπ
又sin2x=sin2(y+kπ)=sin2y=2sinycosy=-2ab a2+b2
cos2x=cos2y=cos2y-sin2y=
代入②,a2-b2 a2+b2
得-
+2abA a2+b2
=C,(a2-b2)B a2+b2
∴2abA+(b2-a2)B+(a2+b2)C=0.