问题 解答题

直线y=kx与圆x2+y2-6x-4y+10=0相交于两个不同点A、B,当k取不同实数值时,求AB中点的轨迹方程.

答案

法一:由

x2+y2-6x-4y+10=0
y=kx

消去y,得(1+k2)x2-(6+4k)x+10=0.

设此方程的两根为x1、x2,AB的中点坐标为P(x,y),

则由韦达定理和中点坐标公式,得x=

x1+x2
2
=
6+4k
2(1+k2)
=
3+2k
1+k2
.①

又点P在直线y=kx上,

∴y=kx.

∴k=

y
x
.②

将②代入①,得x=

3+2×
y
x
1+(
y
x
)
2
(x≠0),整理得x2+y2-3x-2y=0.

故轨迹是圆x2+y2-3x-2y=0位于已知圆内的部分.

解法二:设A(x1,y1),B(x2,y2),则

x12+y12-6x1-4y1+10=0,①

x22+y22-6x2-4y2+10=0,②

①-②,得(x12-x22)+(y12-y22)-6(x1-x2)-4(y1-y2)=0.

设AB的中点为(x,y),则x1+x2=2x,y1+y2=2y.

代入上式,有2x(x1-x2)+2y(y1-y2)-6(x1-x2)-4(y1-y2)=0,

即(2x-6)(x1-x2)+(2y-4)(y1-y2)=0.

x-3
y-2
=-
y1-y2
x1-x2
=-k.③

又∵y=kx,④

由③④得x2+y2-3x-2y=0.

故所求轨迹为已知圆内的一段弧.

单项选择题
单项选择题