问题
填空题
已知函数f(x)=(1+cos2x)sin2x,x∈R.若f(α)=
|
答案
f(x)=(1+cos2x)sin2x=(1+cos2x)•
=1-cos2x 2
=1-cos22x 2
-1 4
cos4x,1 4
因为f(α)=
,即1 4
-1 4
cos4α=1 4
,解得α=1 4
+kπ 4
,k∈Z,π 8
所以f(α+
)=π 8
-1 4
cos4(α+1 4
)=π 8
-1 4
cos4(1 4
+kπ 4
)=π 4
-1 4
cos(kπ+π),1 4
当k为偶数时,f(α+
)=π 8
,当k为奇数时,f(α+1 2
)=0,π 8
所以f(α+
)=π 8
或0,1 2
故答案为:
或0.1 2