问题 解答题
已知α为三角形内角,且tan(α-π)=2
(1)求值:
sinα+cosα
sinα-cosα

(2)锐角β满足sin(α-β)=
10
10
,求cosβ的值.
答案

由已知得tan(α-π)=-tan(π-α)=tanα=2

(1)则

sinα+cosα
sinα-cosα
=
tanα+1
tanα-1
=
2+1
2-1
=3;

(2)因为α∈(0,π),且β∈(0,

π
2
),sin(α-β)=
10
10
>0,

所以cos(α-β)=

1-(
10
10
)
2
=
3
10
10

则tan(α-β)=

1
3
,即
tanα-tanβ
1+tanαtanβ
=
2-tanβ
1+2tanβ
=
1
3

tanβ=1,则cosβ=

cos2β
=
1
sec2β
=
1
1+tan2β
=
2
2

问答题 简答题
判断题