问题 填空题
已知实数x,y∈(0,
π
2
),且tanx=3tany,则x-y的最大值是______.
答案

∵x,y∈(0,

π
2
),∴tanx=3tany>0,

∴tan(x-y)=

tanx-tany
1+tanx•tany
=
2tany
1+3tan2y
=
2
1
tany
+3tany

1
tany
+3tany≥2
3
,当且仅当
1
tany
=3tany
时取等号,即tany=
3
3

∴tan(x-y)=

2
1
tany
+3tany
3
3
,即tan(x-y)的最大值为
3
3

∵x,y∈(0,

π
2
),∴-
π
2
<x-y<
π
2
,则x-y最大值为
π
6

故答案为:

π
6

填空题
多项选择题 案例分析题