问题
填空题
已知实数x,y∈(0,
|
答案
∵x,y∈(0,
),∴tanx=3tany>0,π 2
∴tan(x-y)=
=tanx-tany 1+tanx•tany
=2tany 1+3tan2y
,2
+3tany1 tany
∵
+3tany≥21 tany
,当且仅当3
=3tany时取等号,即tany=1 tany
,3 3
∴tan(x-y)=
≤2
+3tany1 tany
,即tan(x-y)的最大值为3 3
,3 3
∵x,y∈(0,
),∴-π 2
<x-y<π 2
,则x-y最大值为π 2
,π 6
故答案为:
.π 6