问题
解答题
解方程: (1)(x+1)2-144=0 (2)3(x-2)2=x(x-2) (3)
(4)(x+2)2-10(x+2)+24=0. |
答案
(1)∵(x+1)2-144=0,
∴(x+1)2=144,
∴x+1=±12,
解得:x1=11,x2=-13;
(2)∵3(x-2)2=x(x-2),
∴(x-2)(3x-6-x)=0,
∴(x-2)(2x-6)=0,
即x-2=0或2x-6=0,
解得:x1=2,x2=3;
(3)∵
x2-1 2
x-1 3
=0,1 6
∴3x2-2x-1=0,
∴(3x+1)(x-1)=0,
即3x+1=0或x-1=0,
解得:x1=-
,x2=1;1 3
(4)∵(x+2)2-10(x+2)+24=0,
∴(x+2-4)(x+2-6)=0,
即(x-2)(x-4)=0,
即x-2=0或x-4=0,
解得:x1=2,x2=4.