问题
解答题
解下列方程:
(1) x2=5x;
(2) x2-2x-5=0;
(3) 2x2+1=3x;
(4) x(x-3)=x+12;
(5)3(x-2)=5x(x-2);
(6)用配方法解方程x2-8x+1=0.
答案
(1) x2=5x;
移项得,x2-5x=0,
x(x-5)=0,
解得x1=0,x2=5;
(2)x2-2x-5=0;
移项得,x2-2x=5,
配方得,x2-2x+1=6,
(x-1)2=6,
开方得,x-1=±
,6
x1=1+
,x2=1-6
;6
(3)2x2+1=3x,
移项得,2x2-3x+1=0,
因式分解得,(x-1)(2x-1)=0,
x1=1,x2=
;1 2
(4) x(x-3)=x+12,
去括号,整理得x2-4x-12=0,
因式分解得,(x+2)(x-6)=0,
解得,x1=-2,x2=6;
(5)3(x-2)=5x(x-2),
移项得,3(x-2)-5x(x-2)=0,
提取公因式得,(x-2)(3-5x)=0,
解得,x1=2,x2=
.3 5
(6)x2-8x+1=0,
配方得,(x-4)2=15,
开方得,x-4=±
,15
x1=4+
,x2=4-15
.15