问题
选择题
已知函数f ( x )=sinx-2x,若f(x2+y2+4x+2)≥0,则x2+y2+4y+2的最大值为( )
|
答案
由题意由于sinx-2x≤0在[0,+∞)上恒成立,可得f ( x )=sinx-2x>0在(-∞,0)上恒成立,
又f(x2+y2+4x+2)≥0
∴x2+y2+4x+2≤0,此是一个以点(-2,0)为圆心,以
为半径的圆面2
而x2+y2+4y+2的最大值可以看作圆面上的点到定点(0,-2)的最远距离的平方-2,
由于点(-2,0)与点(0,-2)距离为2
,2
故圆面上的点到定点(0,-2)的最远距离为32
所以x2+y2+4y+2的最大值为18-2=16
故选D