问题 解答题

关于x的方程2x2-(a2-4)x-a+1=0,

(1)a为何值时,方程的一根为0?

(2)a为何值时,两根互为相反数?

(3)试证明:无论a取何值,方程的两根不可能互为倒数.

答案

(1)∵关于x的方程2x2-(a2-4)x-a+1=0,一根为0,

-a+1
2
=0,

∴-a+1=0,解得a=1;

(2)∵关于x的方程2x2-(a2-4)x-a+1=0,两根互为相反数,

a2-4
2
=0,解得:a=±2;

把a=2代入原方程得,2x2-1=0,x=±

2
2

把a=-2代入原方程得,2x2+3=0,x2=-

3
2
,无解.

故当a=2时,原方程的两根互为相反数.

(3)因为互为倒数的两个数积为1,所以x1x2=

-a+1
2
=1,

-a+1
2
=1,

解得,a=-1,

把a=-1代入原方程得,2x2+3x+2=0,

∵△=32-4×2×2=-7<0,

∴原方程无解,

∴无论a取何值,方程的两根不可能互为倒数.

单项选择题
选择题