问题
解答题
已知函数f(x)=sin(2x+
(1)求f(
(2)求f(x)的最大值及相应x的值. |
答案
(1)f(
)=sin(2×π 12
+π 12
)-cos(2×π 6
+π 12
)+2cos2π 3
=sinπ 12
-cosπ 3
+1+cosπ 2
=π 6
-0+1+3 2 3 2
=
+13
(2)∵f(x)=sin(2x+
)-cos(2x+π 6
)+2cos2xπ 3
=sin2xcos
+cos2xsinπ 6
-cos2xcosπ 6
+sin2xsinπ 3
+2cos2x+1π 3
=
sin2x+cos2x+1=2sin(2x+3
)+1,π 6
∴当sin(2x+
)=1时,f(x)max=2+1=3,π 6
此时,2x+
=2kπ+π 6
,即x=kπ+π 2
(k∈Z),π 6