问题 解答题
已知函数f(x)=sin(2x+
π
6
)-cos(2x+
π
3
)+2cos2x

(1)求f(
π
12
)
的值;
(2)求f(x)的最大值及相应x的值.
答案

(1)f(

π
12
)=sin(2×
π
12
+
π
6
)-cos(2×
π
12
+
π
3
)+2cos2
π
12
=sin
π
3
-cos
π
2
+1+cos
π
6
=
3
2
-0+1+
3
2

=

3
+1

(2)∵f(x)=sin(2x+

π
6
)-cos(2x+
π
3
)+2cos2x

=sin2xcos

π
6
+cos2xsin
π
6
-cos2xcos
π
3
+sin2xsin
π
3
+2cos2x+1

=

3
sin2x+cos2x+1=2sin(2x+
π
6
)+1,

∴当sin(2x+

π
6
)=1时,f(x)max=2+1=3,

此时,2x+

π
6
=2kπ+
π
2
,即x=kπ+
π
6
(k∈Z)

判断题
多项选择题