问题 解答题
(选做题在直角坐标系xOy中,曲线C的参数方程为
x=2+t
y=t+1
(t
为参数),曲线P在以该直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系下的方程为ρ2-4ρcosθ+3=0.
(1)求曲线C的普通方程和曲线P的直角坐标方程;
(2)设曲线C和曲线P的交点为A、B,求|AB|.
答案

(1)由曲线C的参数方程为

x=2+t
y=t+1
(t为参数),消去参数t得到曲线C的普通方程为x-y-1=0;

∵x=ρcosθ,y=ρsinθ,曲线P在极坐标系下的方程为ρ2-4ρcosθ+3=0,

∴曲线P的直角坐标方程为x2+y2-4x+3=0.

(2)曲线P可化为(x-2)2+y2=1,表示圆心在(2,0),半径r=1的圆,

则圆心到直线C的距离为d=

|1|
2
=
2
2

所以|AB|=2

r2-d2
=
2

单项选择题
填空题