问题
填空题
若直线x-y+t=0与圆x2+y2-2x-6y-6=0相交所得的弦长为4
|
答案
圆x2+y2-2x-6y-6=0化为:(x-1)2+(y-3)2=16.
圆心到直线的距离为d=
=|1-3+t| 2 |t-2| 2
4
=22
,解得t=-2或t=6.42-(
)2t-2 2
故答案为:-2或6
若直线x-y+t=0与圆x2+y2-2x-6y-6=0相交所得的弦长为4
|
圆x2+y2-2x-6y-6=0化为:(x-1)2+(y-3)2=16.
圆心到直线的距离为d=
=|1-3+t| 2 |t-2| 2
4
=22
,解得t=-2或t=6.42-(
)2t-2 2
故答案为:-2或6