问题
填空题
已知a>0,b>0,且
|
答案
因为a>0,b>0,所以1+a>0,1+b>0.
所以由
>a 1+a
得a(1+b)>b(1+a),b 1+b
即a+ab>b+ab,所以a>b.
故答案为:a>b.
已知a>0,b>0,且
|
因为a>0,b>0,所以1+a>0,1+b>0.
所以由
>a 1+a
得a(1+b)>b(1+a),b 1+b
即a+ab>b+ab,所以a>b.
故答案为:a>b.