问题
解答题
(1)已知圆S:x2+y2=a2(a>0),直线l1:y=k1x+p交圆S于C、D两点,交直线l2:y=k2x于E点,若k1•k2=-1,证明:E是CD的中点; (2)已知椭圆T:
|
答案
证明:(1)若k1•k2=-1,则l2:y=-
x,与l1:y=k1x+p联立解得xE=-1 k1
.k1p 1+k12
将l1:y=k1x+p与S:x2+y2=a2(a>0)联立消去y,整理得(1+k12)x2+2k1px+p2-a2=0,
设C(x1,y1),D(x2,y2),CD的中点为M(x0,y0),
则x0=
=x1+x2 2
(-1 2
)=-2k1p 1+k12
=xE,k1p 1+k12
所以E与M重合,故E是CD的中点. …(8分)
(2)证明:若k1•k2=-
,则L2:y=-b2 a2
x,与l1:y=k1x+p联立,解得xE=-b2 a2k1
.a2k1p b2+a2k12
将l1:y=k1x+p与T:
+x2 a2
=1(a>b>0)联立消去y,整理得(b2+a2k12)x2+2a2k1px+a2p2-a2b2=0y2 b2
设C(x1,y1),D(x2,y2),CD的中点为M(x0,y0),
则x0=
=x1+x2 2
(-1 2
)=-2a2k1p b2+a2k12
=xE,a2k1p b2+a2k12
所以E与M重合,故E是CD的中点. …(16分)