问题 选择题
对一切实数x,若一元二次函数f(x)=ax2+bx+c(a<b)的值恒为非负数,则M=
a+b+c
b-a
的最小值为(  )
A.1B.2C.3D.4
答案

由于二次函数的值恒为非负数,所以,a>0,△=b2-4ac≤0⇒c≥

b2
4a

所以,M=

a+b+c
b-a
a+b+
b2
4a
b-a
=
1+
b
a
1
4
(
b
a
)2
b
a
-1

可以设y=

1+
b
a
+
1
4
(
b
a
)
2
b
a
-1
1
4
(
b
a
)
2
 +(1-y)•
b
a
+1+y=0

因为△≥0⇒y≥3或者y≤0

由于0<a<b 所以,

1
4
(
b
a
)
2
 +(1-y)•
b
a
+1+y=0的两根之和为:4(y-1)>2⇒y>
3
2

所以,y≥3 所以,所求表达式的最小值为3.

故选C.

多项选择题
单项选择题